JEE MAIN + ADVANCED MATHEMATICS

TOPIC NAME

 HYPERBOLA(PRACTICE SHEET)

LEVEL- 1

Question
based on

Equation \& Properties of Hyperabola

Q. 1 The vertices of a hyperbola are at $(0,0)$ and $(10,0)$ and one of its foci is at $(18,0)$. The equation of the hyperbola is -
(A) $\frac{x^{2}}{25}-\frac{y^{2}}{144}=1$
(B) $\frac{(x-5)^{2}}{25}-\frac{y^{2}}{144}=1$
(C) $\frac{x^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
(D) $\frac{(x-5)^{2}}{25}-\frac{(y-5)^{2}}{144}=1$
Q. 2 If the latus rectum of an hyperbola be 8 and eccentricity be $\frac{3}{\sqrt{5}}$, then the equation of the hyperbola is-
(A) $4 x^{2}-5 y^{2}=100$
(B) $5 \mathrm{x}^{2}-4 \mathrm{y}^{2}=100$
(C) $4 x^{2}+5 y^{2}=100$
(D) $5 x^{2}+4 y^{2}=100$
Q. 3 The foci of the hyperbola $9 x^{2}-16 y^{2}+18 x+32 y-151=0$ are-
(A) $(2,3),(5,7)$
(B) $(4,1),(-6,1)$
(C) $(0,0),(5,3)$
(D) None of these
Q. 4 The foci of the hyperbola $4 x^{2}-9 y^{2}-36=0$ are-
(A) $[\pm \sqrt{11}, 0]$
(B) $[\pm \sqrt{12}, 0]$
(C) $[\pm \sqrt{13}, 0]$
(D) $[0, \pm \sqrt{12}]$
Q. 5 Foci of the hyperbola $\frac{x^{2}}{16}-\frac{(y-2)^{2}}{9}=1$ are
(A) $(5,2) ;(-5,2)$
(B) $(5,2) ;(5,-2)$
(C) $(5,2) ;(-5,-2)$
(D) None of these
Q. 6 The eccentricity of a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ passing through the points $(3,0),(3 \sqrt{2}, 2)$ will be-
(A) $\sqrt{13}$
(B) $\frac{\sqrt{13}}{3}$
(C) $\frac{\sqrt{13}}{4}$
(D) $\frac{\sqrt{13}}{2}$
Q. 7 Equation of the hyperbola with eccentricity 3/2 and foci at $(\pm 2,0)$ is-
(A) $\frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}$
(B) $\frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}$
(C) $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$
(D) None of these
Q. 8 If the centre, vertex and focus of a hyperbola be $(0,0),(4,0)$ and $(6,0)$ respectively, then the equation of the hyperbola is-
(A) $4 x^{2}-5 y^{2}=8$
(B) $4 x^{2}-5 y^{2}=80$
(C) $5 \mathrm{x}^{2}-4 \mathrm{y}^{2}=80$
(D) $5 x^{2}-4 y^{2}=8$
Q. 9 The eccentricity of the hyperbola can never be equal to-
(A) $\sqrt{\frac{9}{5}}$
(B) $2 \sqrt{\frac{1}{9}}$
(C) $3 \sqrt{\frac{1}{8}}$
(D) $\sqrt{2}$
Q. 10 The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is-
(A) $\frac{4}{3}$
(B) $\frac{4}{\sqrt{3}}$
(C) $\frac{2}{\sqrt{3}}$
(D) None of these
Q. 11 If the length of the transverse and conjugate axes of a hyperbola be 8 and 6 respectively, then the difference of focal distances of any point of the hyperbola will be-
(A) 8
(B) 6
(C) 14
(D) 2
Q. 12 If m is a variable, the locus of the point of intersection of the lines $\frac{x}{3}-\frac{y}{2}=m$ and $\frac{x}{3}+\frac{y}{2}=\frac{1}{m}$ is $\mathrm{a} /$ an-
(A) parabola
(B) ellipse
(C) hyperbola
(D) None of these
Q. 13 The equation of the hyperbola whose foci are $(6,5),(-4,5)$ and eccentricity $5 / 4$ is-
(A) $\frac{(x-1)^{2}}{16}-\frac{(y-5)^{2}}{9}=1$
(B) $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
(C) $\frac{(x-1)^{2}}{9}-\frac{(y-5)^{2}}{16}=1$
(D) None of these
Q. 14 The equation $\frac{x^{2}}{12-\lambda}+\frac{y^{2}}{8-\lambda}=1$ represents
(A) a hyperbola if $\lambda<8$
(B) an ellipse if $\lambda>8$
(C) a hyperbola if $8<\lambda<12$
(D) None of these
Q. 15 The equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a rectangular hyperbola if-
(A) $\Delta \neq 0, h^{2}>a b, a+b=0$
(B) $\Delta \neq 0, h^{2}<a b, a+b=0$
(C) $\Delta \neq 0, h^{2}=\mathrm{ab}, \mathrm{a}+\mathrm{b}=0$
(D) None of these
Q. 16 The equation $\frac{x^{2}}{1-k}-\frac{y^{2}}{1+k}=1, k>1$ represents-
(A) circle
(B) ellipse
(C) hyperbola
(D) None of these
Q. 17 If e and e^{\prime} be the eccentricities of two conics S and S^{\prime} such that $\mathrm{e}^{2}+\mathrm{e}^{\prime 2}=3$, then both S and S^{\prime} are-
(A) ellipse
(B) parabolas
(C) hyperbolas
(D) None of these
Q. 18 A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation $|\mathrm{PA}-\mathrm{PB}|=\mathrm{k}(\mathrm{k} \neq 0)$, then the locus of P is-
(A) a parabola
(B) an ellipse
(C) a hyperbola
(D) a branch of a hyperbola
Q. 19 The equation of the conic with focus at $(1,-1)$, directrix along $\mathrm{x}-\mathrm{y}+1=0$ and with eccentricity $\sqrt{2}$ is-
(A) $x^{2}-y^{2}=1$
(B) $x y=1$
(C) $2 x y-4 x+4 y+1=0$
(D) $2 x y+4 x-4 y-1=0$
Q. 20 The length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is-
(A) $\frac{2 a^{2}}{b}$
(B) $\frac{2 b^{2}}{a}$
(C) $\frac{b^{2}}{a}$
(D) $\frac{a^{2}}{b}$
Q. 21 The equation $16 x^{2}-3 y^{2}-32 x+12 y-44=0$ represents a hyperbola-
(A) the length of whose transverse axis is $4 \sqrt{3}$
(B) the length of whose conjugate axis is 4
(C) whose centre is $(-1,2)$
(D) whose eccentricity is $\sqrt{\frac{19}{3}}$
Q. 22 The length of the transverse axis of a hyperbola is 7 and it passes through the point $(5,-2)$. The equation of the hyperbola is-
(A) $\frac{4}{49} x^{2}-\frac{196}{51} y^{2}=1$
(B) $\frac{49}{4} x^{2}-\frac{51}{196} y^{2}=1$
(C) $\frac{4}{49} x^{2}-\frac{51}{196} y^{2}=1$
(D) none of these
Q. 23 The latus rectum of a hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{p}=1$ is $4 \frac{1}{2}$. Its eccentricity e $=$
(A) $4 / 5$
(B) $5 / 4$
(C) $3 / 4$
(D) $4 / 3$
Q. 24 Consider the set of hyperbola $x y=k, k \in R$. Let e_{1} be the eccentricity when $k=4$ and e_{2} be the eccentricity when $\mathrm{k}=9$. Then $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=$
(A) 2
(B) 3
(C) 4
(D) 1
Q. 25 The eccentricity of the hyperbola $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is given by -
(A) $e=+\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$
(B) $e=+\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}$
(C) $e=+\sqrt{\frac{b^{2}-a^{2}}{a^{2}}}$
(D) $e=+\sqrt{\frac{a^{2}+b^{2}}{b^{2}}}$
Q. 26 If e and e' be the eccentricities of a hyperbola and its conjugate, then $\frac{1}{\mathrm{e}^{2}}+\frac{1}{\mathrm{e}^{\prime^{2}}}=$
(A) 0
(B) 1
(C) 2
(D) None of these

Question based on
 Line and Hyperbola

Q. 27 The equation of a tangent parallel to $\mathrm{y}=\mathrm{x}$ drawn to $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$ is-
(A) $x-y+1=0$
(B) $x-y+2=0$
(C) $x+y-1=0$
(D) $x-y+2=0$
Q. 28 The line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ will be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, if -
(A) $a^{2} \mathrm{l}^{2}+b^{2} m^{2}=n^{2}$
(B) $a^{2} \mathrm{I}^{2}-b^{2} m^{2}=n^{2}$
(C) $a m^{2}-b^{2} n^{2}=a^{2} l^{2}$
(D) None of these
Q. 29 The equation of tangents to the hyperbola $x^{2}-4 y^{2}=36$ which are perpendicular to the line $x-y+4=0$
(A) $y=-x+3 \sqrt{3}$
(B) $y=x-3 \sqrt{3}$
(C) $y=-x \pm 2$
(D) None of these
Q. 30 The line $y=x+2$ touches the hyperbola $5 x^{2}-9 y^{2}=45$ at the point-
(A) $(0,2)$
(B) $(3,1)$
(C) $(-9 / 2,-5 / 2)$
(D) None of these
Q. 31 Equation of tangent to the hyperbola $2 x^{2}-3 y^{2}=6$ which is parallel to the line $y=3 x+4$ is-
(A) $y=3 x+5$
(B) $y=3 x-5$
(C) $y=3 x+5$ and $y=3 x-5$
(D) none of these
Q. 32 If the straight line $x \cos \alpha+y \sin \alpha=p$ be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then-
(A) $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$
(B) $a^{2} \cos ^{2} \alpha-b^{2} \sin ^{2} \alpha=p^{2}$
(C) $a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha=p^{2}$
(D) $a^{2} \sin ^{2} \alpha-b^{2} \cos ^{2} \alpha=p^{2}$
Q. 33 The value of m for which $y=m x+6$ is a tangent to the hyperbola $\frac{x^{2}}{100}-\frac{y^{2}}{49}=1$ is-
(A) $\sqrt{\frac{17}{20}}$
(B) $\sqrt{\frac{20}{17}}$
(C) $\sqrt{\frac{3}{20}}$
(D) $\sqrt{\frac{20}{3}}$
Q. 34 Equation of one of common tangent to parabola $y^{2}=8 x$ and hyperbola $3 x^{2}-y^{2}=3$ is-
(A) $2 x-y-1=0$
(B) $2 x-y+1=0$
(C) $y+2 x+1=0$
(D) $y-2 x+1=0$

LEVEL- 2

Q. 1 The latus rectum subtends a right angle at other focus of a hyperbola then its eccentricity is-
(A) $\sqrt{3}+1$
(B) $\sqrt{2}+1$
(C) $-\sqrt{3}+\sqrt{2}$
(D) 2
Q. 2 The equation of the hyperbola whose foci are the foci of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and the eccentricity is 2 , is -
(A) $\frac{x^{2}}{4}+\frac{y^{2}}{12}=1$
(B) $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
(C) $\frac{x^{2}}{12}+\frac{y^{2}}{4}=1$
(D) $\frac{x^{2}}{12}-\frac{y^{2}}{4}=1$
Q. 3 A tangent to a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ intercepts a length of unity from each of the coordinate axes, then the point (a, b) lies on the-
(A) $x^{2}-y^{2}=2$
(B) $x^{2}-y^{2}=1$
(C) $x^{2}-y^{2}=-1$
(D) none of these
Q. 4 A common tangent to $9 x^{2}-16 y^{2}=144$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=9$ is -
(A) $y=\frac{3}{\sqrt{7}} x+\frac{15}{\sqrt{7}}$
(B) $y=3 \sqrt{\frac{2}{7}} x+\frac{15}{\sqrt{7}}$
(C) $y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7}$
(D) none of these
Q. 5 The product of the lengths of the perpendiculars drawn from foci on any tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is -
(A) a^{2}
(B) b^{2}
(C) $a^{2} b^{2}$
(D) a^{2} / b^{2}
Q. 6 The area of quadrilateral formed by focii of hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{3}=1$ and its conjugate hyperbola is-
(A) 14
(B) 24
(C) 12
(D) None of these
Q. 7 The equations to the common tangents to the two hyperbolas $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ and $\frac{\mathrm{y}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{x}^{2}}{\mathrm{~b}^{2}}=1$ are-
(A) $y= \pm x \pm \sqrt{b^{2}-a^{2}}$
(B) $y= \pm x \pm \sqrt{a^{2}-b^{2}}$
(C) $y= \pm x \pm\left(a^{2}-b^{2}\right)$
(D) $y= \pm x \pm \sqrt{a^{2}+b^{2}}$
Q. 8 A hyperbola has axes along coordinate axes. Its transverse axis is 2 a and it passes through (h, k) then its eccentricity is-
(A) $\sqrt{\frac{\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{a}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}}$
(B) $\sqrt{\frac{\mathrm{h}^{2}-\mathrm{a}^{2}}{\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{a}^{2}}}$
(C) $\sqrt{\frac{\mathrm{h}^{2}+\mathrm{k}^{2}-\mathrm{a}^{2}}{\mathrm{~h}^{2}-\mathrm{a}^{2}}}$
(D) $\sqrt{\frac{\mathrm{h}^{2}-\mathrm{a}^{2}}{\mathrm{~h}^{2}+\mathrm{k}^{2}-\mathrm{a}^{2}}}$
Q. 9 If the focii of the ellipse $\frac{x^{2}}{k^{2} a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ coincides then value of $\mathrm{k}=$
(A) $\pm \sqrt{3}$
(B) $\pm \sqrt{2}$
(C) $\sqrt{3}$
(D) $\sqrt{2}$
Q. 10 The locus of the point of intersection of the lines $b x t-a y t=a b$ and $b x+a y=a b t$ is -
(A) a parabola
(B) an ellipse
(C) a hyperbola
(D) None of these
Q. 11 Let LL' be the latus rectum through the focus S of a hyperbola and A^{\prime} be the farther vertex of the conic. If $\Delta A^{\prime} L L^{\prime}$ is equilateral then its eccentricity e $=$
(A) $\sqrt{3}$
(B) $\sqrt{3}+1$
(C) $(\sqrt{3}+1) / \sqrt{2}$
(D) $(\sqrt{3}+1) / \sqrt{3}$
Q. 12 If the latus rectum subtends a right angle at the centre of the hyperbola then its eccentricity is
(A) $\mathrm{e}=(\sqrt{13}) / 2$
(B) $e=(\sqrt{5}-1) / 2$
(C) $\mathrm{e}=(\sqrt{5}+1) / 2$
(D) $\mathrm{e}=(\sqrt{3}+1) / 2$
Q. 13 The equation $x=\frac{e^{t}+e^{-t}}{2} ; y=\frac{e^{t}-e^{-t}}{2} ; t \in R$ represents
(A) an ellipse
(B) a parabola
(C) a hyperbola
(D) a circle
Q. 14 If the tangent at the point $(2 \sec \theta, 3 \tan \theta)$ of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ is parallel to $3 x-y+4=0$, then the value of θ is-
(A) 45°
(B) 60°
(C) 30°
(D) 75°
Q. 15 The ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ have in common-
(A) centre only
(B) centre, foci and directrices
(C) centre, foci and vertices
(D) centre and vertices only
Q. 16 The tangents to the hyperbola $x^{2}-y^{2}=3$ are parallel to the straight line $2 x+y+8=0$ at the following points-
(A) $(2,1)$
(B) $(2,-1)$
(C) $(-2,1)$
(D) $(-2,-1)$
Q. $17 P$ is a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, N$ is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T . If O is the centre of the hyperbola, then OT.ON is equal to -
(A) e^{2}
(B) a^{2}
(C) b^{2}
(D) $\frac{b^{2}}{a^{2}}$
Q. 18 If e_{1}, e_{2} are the eccentricities of the ellipse $\frac{x^{2}}{18}+\frac{y^{2}}{4}=1$ and the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ respectively, then the relation between e_{1} and e_{2} is -
(A) $3 \mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=2$
(B) $\mathrm{e}_{1}^{2}+2 \mathrm{e}_{2}^{2}=3$
(C) $2 \mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=3$
(D) $\mathrm{e}_{1}^{2}+3 \mathrm{e}_{2}^{2}=2$
Q. 19 The value of m for which line $y=m x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of the equation $x^{2}-(a+b) x-4=0$, then $(a+b)$ is equal to-
(A) 2
(B) 4
(C) 0
(D) none of these
Q. 20 The area of triangle formed by lines $x^{2}-y^{2}=0$ and any tangent to the hyperbola $x^{2}-y^{2}=a^{2}$ is-
(A) $2 a^{2}$
(B) $4 a^{2}$
(C) a^{2}
(D) None of these
Q. 21 If the distances between the foci and the distance between the directrices of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ are in the ratio 3:2 then $\mathrm{a}: \mathrm{b}$ is-
(A) $\sqrt{2}: 1$
(B) $\sqrt{3}: \sqrt{2}$
(C) $1: 2$
(D) $2: 1$
Q. 22 If the eccentricity of the hyperbola $x^{2}-y^{2} \sec ^{2} \alpha=5$ is $\sqrt{3}$ times the eccentricity of the ellipse $x^{2} \sec ^{2} \alpha+y^{2}=25$, then a value of α is-
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{2}$
Q. 23 If the tangent at the point $\mathrm{P}(\mathrm{a} \sec \alpha, \mathrm{b} \tan \alpha)$ to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets its transverse axis at T , then ST (S focus) must be equal to
(A) $a(e-\cos \alpha)$
(B) $b(e+\cos \alpha)$
(C) $a(e+\cos \alpha)$
(D) $\sqrt{\mathrm{a}^{2} \mathrm{e}^{2}+\mathrm{b}^{2} \cot ^{2} \alpha}$

Questions based on Statements (Q. 24-27)
Each of the questions given below consist of Statement I and Statement - II. Use the following Key to choose the appropriate answer.
(A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of Statement-I.
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.
(C) If Statement - I is true but Statement - II is false.
(D) If Statement - I is false but Statement - II is true.
Q. 24 Statement-(1): If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is a point on $\mathrm{b}^{2} \mathrm{x}^{2}+\mathrm{a}^{2} \mathrm{y}^{2}=\mathrm{a}^{2} \mathrm{~b}^{2}$ then area $\Delta \mathrm{SPS}^{\prime}$ $=a e \sqrt{\mathrm{a}^{2}-\mathrm{x}_{1}^{2}}$

Statement-(2) : A tangent to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ meets the transverse and conjugate axis in P and Q then $\frac{\mathrm{a}^{2}}{\mathrm{CP}^{2}}-\frac{\mathrm{b}^{2}}{\mathrm{CQ}^{2}}=1$, where C is the centre of the conic. Which of the statements is correct?
(A) both 1 and 2
(B) only 1
(C) only 2
(D) neither 1 nor 2
Q. 25 Statement-(1) : The conic $16 x^{2}-3 y^{2}-32 x+$ $12 y-44=0$ represent a hyperbola.

Statement- (2) : The square of the coefficient of $x y$ is greater than the product of the coefficient of $x^{2} \& y^{2}$ and $\Delta \neq 0$.
Q. 26 Statement-(1): The latus-rectum of the hyperbola $x^{2}-y^{2}=a^{2}$ is equal to the length of its transverse axis.
Statement-(2): The semi latusrectum of the ellipse $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ is equal to $\frac{b^{2}}{a}$.
Q. 27 Statement- (1) : The equation
$x^{2}+2 y^{2}+\lambda x y+2 x+3 y+1=0$ can never represent a hyperbola.

Statement- (2): The general equation of second degree represents a hyperbola if $h^{2}>a b$.

Passage : (Q.No. 28 \& 29)

If parametric equation of hyperbola is $x=\frac{e^{t}+e^{-t}}{2} \& y=\frac{e^{t}-e^{-t}}{3}$ then.
Q. 28 Eccentricity of hyperbola is
(A) $\frac{\sqrt{13}}{2}$
(B) $\frac{\sqrt{13}}{3}$
(C) $\frac{3}{2}$
(D) $\sqrt{13}$
Q. 29 Eccentric angle of point $\left(2, \frac{2}{\sqrt{3}}\right)$ on hyperbola
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$
(D) None of these

LEVEL- 3

(Question asked in previous AIEEE and IIT-JEE)

SECTION -A

Q. 1 The latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$ is-
[AIEEE-2002]
(A) $16 / 3$
(B) $32 / 3$
(C) $8 / 3$
(D) $4 / 3$
Q. 2 The foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ and the hyperbola $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ coincide. Then the value of b^{2} is-
[AIEEE- 2003]
(A) 9
(B) 1
(C) 5
(D) 7
Q. 3 The locus of a point $P(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ is- [AIEEE-2005]
(A) an ellipse
(B) a circle
(C) a parabola
(D) a hyperbola
Q. 4 The equation of the hyperbola whose foci are $(-2,0)$ and $(2,0)$ and eccentricity is 2 is given by -
[AIEEE-2011]
(A) $x^{2}-3 y^{2}=3$
(B) $3 x^{2}-y^{2}=3$
(C) $-x^{2}+3 y^{2}=3$
(D) $-3 x^{2}+y^{2}=3$

SECTION -B

Q. 1 If $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$ represents family of hyperbolas, where α varies then-
[IIT Scr.2003/AIEEE-07]
(A) e remains constant
(B) abscissas of foci remain constant
(C) equation of directrices remain constant
(D) abscissa of vertices remain constant
Q. 2 The point at which the line $2 x+\sqrt{6} y=2$ touches the curve $x^{2}-2 y^{2}=4$, is-
[IIT Scr. 2004]
(A) $(4,-\sqrt{6})$
(B) $(\sqrt{6}, 1)$
(C) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
(D) $\left(\frac{\pi}{6}, \pi\right)$
Q. 3 If a hyperbola passes through the focus of the $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ and its transverse and conjugate axes coincide with the major and minor axis of ellipse, and product of eccentricities is 1 , then
[IIT-2006]
(A) Focus of hyperbola is $(5,0)$
(B) Focus of hyperbola is $(5 \sqrt{3}, 0)$
(C) The equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$
(D) The equation of hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
Q. 4 A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^{2}+4 y^{2}=12$. Then its equation is- [IIT-2007]
(A) $x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1$
(B) $x^{2} \sec ^{2} \theta-y^{2} \operatorname{cosec}^{2} \theta=1$
(C) $x^{2} \sin ^{2} \theta-y^{2} \cos ^{2} \theta=1$
(D) $x^{2} \cos ^{2} \theta-y^{2} \sin ^{2} \theta=1$
Q. 5 An ellipse intersects the hyperbola $2 x^{2}-2 y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then
[IIT-2009]
(A) equation of ellipse is $x^{2}+2 y^{2}=2$
(B) the foci of ellipse are $(\pm 1,0)$
(C) equation of ellipse is $x^{2}+2 y^{2}=4$
(D) the foci of ellipse are $(\pm \sqrt{2}, 0)$
Q. 6 The line $2 \mathrm{x}+\mathrm{y}=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this line passes through the point of intersection of the nearest directrix and the x -axis, then the eccentricity of the hyperbola is -
[IIT-2010]
(A) 2
(B) 3
(C) 4
(D) $\sqrt{3}$

Passage : (Q. 7 to Q.8)

The circle $x^{2}+y^{2}-8 x=0$ and hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ intersect at the points A and B
[IIT-2010]
Q. 7 Equation of a common tangent with positive slope to the circle as well as to the hyperbola is -
(A) $2 x-\sqrt{5} y-20=0$
(B) $2 x-\sqrt{5} y+4=0$
(C) $3 x-4 y+8=0$
(D) $4 x-3 y+4=0$
Q. 8 Equation of the circle with AB as its diameter is
(A) $x^{2}+y^{2}-12 x+24=0$
(B) $x^{2}+y^{2}+12 x+24=0$
(C) $x^{2}+y^{2}+24 x-12=0$
(D) $x^{2}+y^{2}-24 x-12=0$
Q. 9 Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. If the hyperbola passes through a focus of the ellipse, then -
[IIT-2011]
(A) the equation of the hyperbola is

$$
\frac{x^{2}}{3}-\frac{y^{2}}{2}=1
$$

(B) a focus of the hyperbola is $(2,0)$
(C) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
(D) the equation of the hyperbola is $x^{2}-3 y^{2}=3$
Q. 10 Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contact of the tangents on the hyperbola are
[IIT-2012]
(A) $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(B) $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(C) $(3 \sqrt{3},-2 \sqrt{2})$
(D) $(-3 \sqrt{3}, 2 \sqrt{2})$

LEVEL-1

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Ans.	B	A	B	C	A	B	A	C	B	C	A	C	A
Q.No.	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$
Ans.	C	A	D	C	C	C	A	D	C	B	C	D	B
Q.No.	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$	$\mathbf{3 0}$	$\mathbf{3 1}$	$\mathbf{3 2}$	$\mathbf{3 3}$	$\mathbf{3 4}$					
Ans.	A	B	A	C	C	B	A	B, C					

LEVEL-2

Q.No.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Ans.	B	B	B	B	B	A	B	C	A	C	D	C	C
Q.No.	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 6}$
Ans.	C	D	B,C	B	C	C	C	A	B	A,C	C	A	A
Q.No.	$\mathbf{2 7}$	$\mathbf{2 8}$	$\mathbf{2 9}$										
Ans.	D	B	C										

LEVEL-3

SECTION-A

Qus.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Ans.	B	D	D	B

SECTION-B

1.[B] $\sin ^{2} \alpha=\cos ^{2} \alpha \cdot e^{2}-\cos ^{2} \alpha$
$\cos ^{2} \alpha \cdot \mathrm{e}^{2}=1$
i.e. Abscissas of foci remain constant.
2.[A] Let point of contract be ($\mathrm{x}_{1}, \mathrm{y}_{1}$)
$\mathrm{xx}_{1}-2 \mathrm{yy}_{1}-4=0$
$2 x+\sqrt{6} y-2=0$
$\frac{\mathrm{x}_{1}}{2}=-\frac{2 \mathrm{y}_{1}}{\sqrt{6}}=\frac{-4}{-2}$
$\mathrm{x}_{1}=4$
$y_{1}=-\sqrt{6}$
$(4,-\sqrt{6})$

$$
\text { 3. }[A, D] e_{e}=\frac{3}{5} \quad e_{h}=\frac{5}{3}
$$

focii of ellipse is $(\pm 3,0)$
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
As it passes through $(3,0)$
$3^{2}=a^{2} \Rightarrow a= \pm 3$
$e_{h}= \pm 5, b^{2}=25-9=16$
$\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
4.[A] $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$
i.e. $e^{2}=\frac{1}{4} \Rightarrow e=\frac{1}{2}$

Hence foci are $(\pm 1,0)$
Also required hyperbola is $\frac{x^{2}}{\sin ^{2} \theta}-\frac{y^{2}}{b^{2}}=1$
As these two are confocal $\sqrt{\mathrm{b}^{2}+\sin ^{2} \theta}=1$
$\therefore \mathrm{b}^{2}=\cos ^{2} \theta$
Hence required equation is

$$
x^{2} \operatorname{cosec}^{2} \theta-y^{2} \sec ^{2} \theta=1
$$

5.[A, B] Given hyperbola is $2 x^{2}-2 y^{2}=1$
its foci are $(\pm 1,0)$
As ellipse intersects it orthogonally. Hence foci of ellipse be $(\pm 1,0)$. Also, eccentricity of hyperbola is $\sqrt{2}$ then eccentricity of ellipse is
$\frac{1}{\sqrt{2}}$. Hence equation of ellipse be
$\frac{x^{2}}{2}+y^{2}=1$ i.e. $x^{2}+2 y^{2}=2$
6. [A] $\quad 1=4 a^{2}-b^{2}$
$\frac{2 \mathrm{a}}{\mathrm{e}}=1$
$a=\frac{\mathrm{e}}{2}$
Also $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)$
from (1) and (3), we get
$1=4 a^{2}-a^{2} e^{2}+a^{2}$
$\Rightarrow 1=5 \mathrm{a}^{2}-\mathrm{a}^{2} \mathrm{e}^{2}$
$\Rightarrow 1=\frac{5 \mathrm{e}^{2}}{4}-\frac{\mathrm{e}^{4}}{4}$
$\Rightarrow \mathrm{e}^{4}-5 \mathrm{e}^{2}+4=0$
$\Rightarrow\left(\mathrm{e}^{2}-4\right)\left(\mathrm{e}^{2}-1\right)=0$
$\therefore \mathrm{e}=2$
7.[B] $\mathrm{y}=\mathrm{m}(\mathrm{x}-4) \pm 4 \sqrt{1+\mathrm{m}^{2}}$
$\Rightarrow \mathrm{y}=\mathrm{mx} \pm \sqrt{9 \mathrm{~m}^{2}-4}$
$\Rightarrow-4 \mathrm{~m} \pm 4 \sqrt{1+\mathrm{m}^{2}}= \pm \sqrt{9 \mathrm{~m}^{2}-4}$
$\Rightarrow 16 \mathrm{~m}^{2}+16+16 \mathrm{~m}^{2} \mp 32 \mathrm{~m} \sqrt{1+\mathrm{m}^{2}}$
$=9 \mathrm{~m}^{2}-4$
$\Rightarrow \mp 32 \mathrm{~m} \sqrt{1+\mathrm{m}^{2}}=-23 \mathrm{~m}^{2}-20$
$\Rightarrow 1024 \mathrm{~m}^{2}+1024 \mathrm{~m}^{4}=529 \mathrm{~m}^{4}+400+920 \mathrm{~m}^{2}$
$\Rightarrow 495 \mathrm{~m}^{4}+104 \mathrm{~m}^{2}-400=0$
$\Rightarrow\left(5 m^{2}-4\right)\left(99 m^{2}+100\right)=0$
$\Rightarrow \mathrm{m}^{2}=\frac{4}{5} \Rightarrow \mathrm{~m}= \pm \frac{2}{\sqrt{5}}$
So tangent with positive slope
$\Rightarrow \mathrm{y}=\frac{2}{\sqrt{5}} \mathrm{x} \pm \frac{4}{\sqrt{5}}$
$\Rightarrow 2 \mathrm{x}-\sqrt{5} \mathrm{y} \pm 4=0$
8. [A] $\quad x^{2}+y^{2}-8 x=0$
$4 x^{2}-9 y^{2}=36$
$\Rightarrow x^{2}+\left(\frac{4 x^{2}-36}{9}\right)-8 \mathrm{x}=0$
$\Rightarrow 13 \mathrm{x}^{2}-72 \mathrm{x}-36=0$
$\Rightarrow(\mathrm{x}-6)(13 \mathrm{x}+6)=0$
$\Rightarrow \mathrm{x}=6,-\frac{6}{13}$
$\Rightarrow x=6, \quad y= \pm \sqrt{12}$
equation of required circle is
$\Rightarrow(\mathrm{x}-6)^{2}+(\mathrm{y}-\sqrt{12})(\mathrm{y}+\sqrt{12})=0$
$\Rightarrow x^{2}+y^{2}-12 x+24=0$
9. $[\mathbf{B}, \mathbf{D}]$ Let $\mathrm{e}_{1}=$ eccentricity of hyperbola $\mathrm{e}_{2}=$ eccentricity of ellipse
$\therefore \mathrm{e}_{1}=\frac{1}{\mathrm{e}_{2}}$
So eccentricity of ellipse $=\frac{\sqrt{3}}{2}=e_{2}$

$$
\text { Eccentricity of hyperbola }=\frac{2}{\sqrt{3}}=\mathrm{e}_{1}
$$

Now focus of ellipse is $\left(\pm \mathrm{ae}_{2}, 0\right)=(\pm \sqrt{3}, 0)$
Hyperbola passes through it
So $\frac{(\sqrt{3})^{2}}{a^{2}}-0=1 \Rightarrow a^{2}=3$
also $\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}_{1}^{2}-1\right)$

$$
\mathrm{b}^{2}=3\left(\frac{4}{3}-1\right)=1
$$

and hyperbola
$\frac{x^{2}}{3}-\frac{y^{2}}{1}=1$
also focus $(\pm \mathrm{ae}, 0)=(\pm 2,0)$

10. $[\mathrm{A}, \mathrm{B}]$

Equation of tangent is
$2 x-y+c=0$
$y=2 x+c$
slope $\mathrm{m}=2$
$\therefore \quad \mathrm{a}^{2}=9, \mathrm{~b}^{2}=4$
$\therefore \quad \mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}=9 \times 4-4$
$c= \pm 4 \sqrt{2}$
\therefore point of contact is $\left(\pm \frac{a^{2} m}{c}, \pm \frac{b^{2}}{c}\right)$

